CSE 114A

Foundations of Programming
Languages

Functors and Monads

Based on course materials developed by Nadia Polikarpova, Ranjit Jhala, and Owen Arden

Abstracting Code Patterns

data List a

=[]
| (:) a (List a)

Abstracting Code Patterns

Rendering the Values of a List

-- >>> showlList [1, 2, 3]

--["1", "2", "37]

showlList :: [Int] -> [String]
showList [] [1]

showList (n:ns) show n : showList ns

Squaring the values of a list
-- >>> sgrlList [1, 2, 3]

--1, 4, 9
sqrList :: [Int] -> [Int]
sqrList [] []

sqrList (n:ns) n*2 : sqrList ns

Common Pattern: map over a list

Refactor iteration into mapList

mapList :: (a -> b) -> [a] -> [b]
mapList f [] =[]
mapList f (x:xs) = f x : mapList f xs

Reuse map to implement inc and sqr

showList xs = mapList (\n -> show n) xs

sqrList xs = mapList (\n -> n ~ 2) xs

What about trees?

data Tree a
= Leaf
| Node a (Tree a) (Tree a)

What about trees?

-- >>> showTree (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
-- (Node "2" (Node "1" Leaf Leaf) (Node "3" Leaf Leaf))
showTree :: Tree Int -> Tree String

showTree Leaf = ???

showTree (Node v 1 r) = ?2??

-- >>> sqrTree (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
-- (Node 4 (Node 1 Leaf Leaf) (Node 9 Leaf Leaf))

sqrTree :: Tree Int -> Tree Int

sqrTree Leaf = ???

sqrTree (Node v 1 r) = 2???

QUIZ

Refactor iteration into mapTree! What should the type of mapTree be?

mapTree :: ???
showTree t = mapTree (\n -> show n) t
sqrTree t

mapTree (\n -> n ~ 2) t

(A) (Int -> Int) -> Tree Int -> Tree Int

(B) (Int -> String) -> Tree Int -> Tree String ol

(C) (Int -> a) =-> Tree Int -> Tree a E E;’IE
(D) (a -> a) -> Tree a -> Tree a 14+ -
(E) (a -> b) -> Tree a -> Tree b

http://tiny.cc/cse116-maptree-ind

QUIZ

Refactor iteration into mapTree! What should the type of mapTree be?

mapTree :: ???
showTree t = mapTree (\n -> show n) t
sqrTree t = mapTree (\n -> n ~ 2) t

(A) (Int -> Int) -> Tree Int -> Tree Int

(B) (Int -> String) -> Tree Int -> Tree String .

(C) (Int -> a) -> Tree Int -> Tree a E E;’IE
(D) (a -> a) -> Tree a -> Tree a

(E) (a -> b) -> Tree a -> Tree b

http://tiny.cc/cse116-maptree-grp

Lets write mapTree

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Leaf = ???
mapTree f (Node v 1 r) = ???

Lets write mapTree

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Leaf = Leaf
mapTree f (Node v 1 r) = Node (f v) (mapTree f 1) (mapTree f r)

Wait ... there is a common pattern across two datatypes
mapList :: (a -> b) -> List a -> List b -- List
mapTree :: (a -> b) -> Tree a -> Tree b -- Tree

Lets make a type class for it!

class Functor t where
fmap :: ???

QUIZ

class Functor t where
fmap :: ???

What type should we give to fmap?

(A) (b ->a) ->tb ->t a
(B) (a ->a) ->t a ->t a
(€) (a ->b) -> [a] -> [b]
(D) (a ->b) ->t a ->tb E E

a

i1k

http://tiny.cc/cse116-fmap-ind

(E) (a -> b) -> Tree a -> Tree b

QUIZ

class Functor t where
fmap :: ???

What type should we give to fmap?

(A) (b ->a) ->tb -> t a
(B) (a ->a) ->ta ->t a
(€) (a ->b) -> [a] -> [b]
(D) (a ->b) ->t a ->tb

(E) (a -> b) -> Tree a -> Tree b

http:/ftiny.cc/cse116-fmap-grp

Reuse Iteration Across Types

class Functor t where
fmap :: (a ->b) ->ta->tb

instance Functor [] where
fmap = maplList

instance Functor Tree where
fmap = mapTree

And now we can do

-- >>> fmap (*2) (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
-- (Node 4 (Node 1 Leaf Leaf) (Node 9 Leaf Leaf))

Exercise: Write a Functor instance

data Result a
= Error String
| ok a

instance Functor Result where
fmap f (Error msg) = ???
fmap f (Ok val) ???

When you’re done you should see

>>> fmap (\n -> n ~ 2) (Error "oh no")
(Error "oh no")

>>> fmap (\n -> n ~ 2) (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
(Node 4 (Node 1 Leaf Leaf) (Node 9 Leaf Leaf))

What Types will this work on?

sq :: (Functor t) => t Int -> t Int
sq x = fmap ("*2) x

What Types will this work on?

sq :: (Functor t) => t Int -> t Int
sq t = fmap (*2) t

>>> sq (Error "oh no")
(Error "oh no")

>>> sq (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
(Node 4 (Node 1 Leaf Leaf) (Node 9 Leaf Leaf))

>>> sq [1, 2, 3]
[1, 4, 9]

On to Monads

Recall our old Expr datatype

data Expr
= Number Int
| Plus Expr Expr
| Div Expr Expr
deriving (Show)

eval :: Expr -> Int

eval (Number n) =n

eval (Plus el e2) = eval el + eval e2
eval (Div el e2) = eval el “div’ eval e2

-- >>> eval (Div (Number 6) (Number 2))
-- 3

But, what is the result

-- >>> eval (Div (Number 6) (Number ©))
-- ¥¥* Fxception: divide by zero

A crash! Lets look at an alternative approach to avoid dividing by zero.

The idea is to return a Result Int (instead of a plain Int)

« If a sub-expression had a divide by zero, return Error
« If all sub-expressions were safe, then return the actual Value v

data Result a
= Error String
| value a

But, what is the result

eval :: Expr -> Result Int
eval (Number n) Value n
eval (Plus el e2) case eval el of
Error errl -> Error errl
Value vl -> case eval e2 of
Error err2 -> Error err2
Value v2 -> Result (v1 + v2)

eval (Div el e2) = case eval el of
Error errl -> Error errl
Value vl -> case eval e2 of
Error err2 -> Error err2
Value v2 ->
if v2 ==
then Error ("yikes dbz:" ++ show e2)
else Value (vl “div’ v2)

But, what is the result

The good news, no nasty exceptions, just a plain Error result

A> eval (Div (Number 6) (Number 2))

Value 3

A> eval (Div (Number 6) (Number 0))

Error "yikes dbz:Number 0"

A> eval (Div (Number 6) (Plus (Number 2) (Number (-2))))
Error "yikes dbz:Plus (Number 2) (Number (-2))"

The bad news: the code is super duper gross

20

Let’s spot a Pattern

The code is gross because we have these cascading blocks

case eval el of
Error errl -> Error errl
Value v1 -> case eval e2 of
Error err2 -> Error err2
Value v2 -> Result (vl + v2)

but really both blocks have something common pattern
case e of
Error err -> Error err
Value v -> {- do stuff with v -}
1. Evaluate e
2. If the result is an Error then return that error.
3. If the result is a Value v then do some further processing on v.

21

Let’s spot a Pattern

Lets bottle that common structure in a function:
® >>= (pronounced bind)

(>>=) :: Result a -> (a -> Result b) -> Result b
(Error err) >>= = Error err

(vValue v) >>= process = process Vv

NOTE: return is not a keyword; it is just the name of a function!

22
The magic bottle lets us clean up our eval
eval :: Expr -> Result Int
eval (Number n) = return n
eval (Plus el e2) = eval el >>= (\vl ->
eval e2 >>= (\v2 ->
Value (vl + v2)))
eval (Div el e2) = eval el >>= (\vl ->
eval e2 >>= (\v2 ->
if v2 ==
then Error ("yikes dbz:" ++ show e2)
else Value (vl “div’ v2)))
The gross pattern matching is all hidden inside >>=
23

A Cleaned up Evaluator

Notice the >>= takes two inputs of type:

e Result Int (e.g. eval eloreval e2)
e Int -> Result Int (e.g. The processing function that takes the v and
does stuff with it)

In the above, the processing functions are written using
\vl -> ...and \v2 ->

NOTE: It is crucial that you understand what the code above is doing, and why it is
actually just a “shorter” version of the (gross) nested-case-of eval.

24

A Class for >>=

Like fmap or show or jval or ==, the >>= operator is useful across
many types, so we capture it in an interface/typeclass:

class Monad m where
(>»=) ::ma->(a->mb) ->mb
return :: a ->m a

Notice how the definitions for Result fit the above, withm = Result

instance Monad Result where
(>>=) :: Result a -> (a -> Result b) -> Result b
(Error err) >>= _ = Error err

(Value v) >>= process = process Vv

return :: a -> Result a
return v = Value v

25

Syntax for >>=

In fact >>=is so useful there is special syntax for it.

Instead of writing
el >>= \vl ->
e2 >>= \v2 ->
e3 >>= \v3 ->
e
you can write
do vl <- el
V2 <- e2
v3 <- e3
e

26

Syntax for >>=

Thus, we can further simplify our eval to:

eval :: Expr -> Result Int

eval (Number n) = return n

eval (Plus el e2) = do vl <- eval el
v2 <- eval e2
return (vl + v2)

eval (Div el e2) do vl <- eval el

v2 <- eval e2
if v2 == 0
then Error ("yikes dbz:

++ show e2)
else return (v1 “div® v2)

27

Purity and the Immutability Principle

Haskell is a pure language. Not a value judgment, but a
precise technical statement:

The “Immutability Principle”:

« A function must always return the same output for a given input

« A function’s behavior should never change

28

No Side Effects

Haskell’s most radical idea: expression ==> value

« When you evaluate an expression you get a value and nothing
else happens

Specifically, evaluation must not have any side effects
« change a global variable or

« print to screen or

Purity means functions may depend
only on their inputs

+ send an email or functions should give the same
output for the same input every time

« read a file or

o launch a missile.

29

But... how to write “Hello, world!”

But, we want to ...

« print to screen
* read a file
« send an email

A language that only lets you write factorial and fibonacci is
... hot very useful!

Thankfully, you can do all the above via a very clever idea: Recipe

30

Recipes

Haskell has a special type called IO - which you can think of as Recipe

type Recipe a = I0 a

A value of type Recipe a'is

« adescription of an effectful computations
« when executed (possibly) perform some effectful 1/0 operations to

e produce a value of type a.

This analogy is due to Joachim Brietner

31

Recipes have No Effects

Avalue of type Recipe a'is

« Just a description of an effectful computation

« Aninert, perfectly safe thing with no effects.

Merely having a Recipe Cake has no effects: holding the recipe

» Does not make your oven hot

« Does not make your your floor dirty

32

Executing Recipes

There is only one way to execute a Recipe a

Haskell looks for a special value

main :: Recipe ()

The value associated with main is handed to the runtime system
and executed

The Haskell runtime is the only one allowed to cook!

33

How to write an App in Haskell

Make a Recipe () that is handed off to the master chef main.
« main can be arbitrarily complicated

« will be composed of many smaller recipes

34

Hello World

putStrLn :: String -> Recipe ()
The function putStrLn

« takes as input a String
« returns as output a Recipe ()

putStrLn msgisaRecipe () when executed prints out msg on the screen.

main :: Recipe ()
main = putStrLn "Hello, world!"

... and we can compile and run it
$ ghc --make hello.hs
$./hello

Hello, world!

35

QUIZ: Combining Recipes

Next, lets write a program that prints multiple things:
main :: IO ()
main = combine (putStrLn "Hello,") (putStrLn "World!")

-- putStrLn :: String -> Recipe ()

-- combine :: ???

What must the type of combine be?

(A) combine :: () -> () -> ()

(B) combine :: Recipe () -> Recipe () -> Recipe ()

(C) combine :: Recipe a -> Recipe a -> Recipe a
(D) combine :: Recipe a -> Recipe b -> Recipe b
(E) combine :: Recipe a -> Recipe b -> Recipe a

36

Using Intermediate Results

Next, lets write a program that

1. Asks for the user’s name using
getlLine :: Recipe String

2. Prints out a greeting with that name using
putStrLn :: String -> Recipe ()

Problem: How to pass the output of first recipe into the second recipe?

37
QUIZ: Using Yolks to Make Batter
Suppose you have two recipes
crack :: Recipe Yolk
eggBatter :: Yolk -> Recipe Batter
and we want to get
mkBatter :: Recipe Batter
mkBatter = crack ~combineWithResult™ eggBatter
What must the type of combineWithResult be?
(A) Yolk -> Batter -> Batter
(B) Recipe Yolk -> (Yolk -> Recipe Batter) -> Recipe Batter
(C) Recipe a -> (a -> Recipe a) -> Recipe a
(D) Recipe a -> (a -> Recipe b) -> Recipe b
(E) Recipe Yolk -> (Yolk -> Recipe Batter) -> Recipe ()

38

Look Familiar?

Wait a bit, the signature looks familiar!

combineWithResult :: Recipe a -> (a -> Recipe b) -> Recipe b

Remember this?

(>>=) :: Result a -> (a -> Result b) -> Result b

39

Recipe is an instance of Monad

instance Monad Recipe where
(>>=) = {-... combinewWithResult... -}

So we can put this together with putStrLn to get:
main :: Recipe ()

main = getLine >>= (\name -> putStrLn ("Hello, " ++ name ++ "!"))

or, using do notation the above becomes

main :: Recipe ()
main = do name <- getlLine
putStrLn ("Hello, " ++ name ++ "1")

40

Recipe is an instance of Monad

Exercise

1. Compile and run to make sure its ok!

2. Modify the above to repeatedly ask for names.

3. Extend the above to print a “prompt” that tells you how many
iterations have occurred.

41

Monads are Amazing

Monads have had a revolutionary influence in PL, well beyond
Haskell, some recent examples

e Error handling in go e.g. 1 and 2

e Asynchrony in JavaScript e.g. 1 and 2

Big data pipelines e.g. LinQ and TensorFlow

« and Language-based security!

42

